
CHIMP: Crowdsourcing Human Inputs for Mobile Phones

Mario Almeida
†
, Muhammad Bilal

§
, Alessandro Finamore

£
, Ilias Leontiadis

£
, Yan Grunenberger

£
,

Matteo Varvello
‡
, Jeremy Blackburn

✡

†
Polytechnic University of Catalonia,

§
Universite Catholique de Louvain,

£
Telefonica Research,

‡
AT&T,

✡
University of Alabama at Birmingham

ABSTRACT
While developing mobile apps is becoming easier, testing and char-

acterizing their behavior is still hard. On the one hand, the de facto

testing tool, called “Monkey,” scales well due to being based on ran-

dom inputs, but fails to gather inputs useful in understanding things

like user engagement and attention. On the other hand, gathering

inputs and data from real users requires distributing instrumented

apps, or even phones with pre-installed apps, an expensive and

inherently unscaleable task.

To address these limitations we present CHIMP, a system that

integrates automated tools and large-scale crowdsourced inputs.

CHIMP is different from previous approaches in that it runs apps in

a virtualized mobile environment that thousands of users all over

the world can access via a standard Web browser. CHIMP is thus

able to gather the full range of real-user inputs, detailed run-time

traces of apps, and network traffic.

We thus describe CHIMP’s design and demonstrate the efficiency

of our approach by testing thousands of apps via thousands of

crowdsourced users. We calibrate CHIMP with a large-scale cam-

paign to understand how users approach app testing tasks. Finally,

we show how CHIMP can be used to improve both traditional app

testing tasks, as well as more novel tasks such as building a traffic

classifier on encrypted network flows.

ACM Reference Format:
Mario Almeida, Muhammad Bilal, Alessandro Finamore, Ilias Leontiadis, Yan

Grunenberger, Matteo Varvello, Jeremy Blackburn. 2018. CHIMP: Crowd-

sourcing Human Inputs for Mobile Phones. InWWW 2018: The 2018 Web
Conference, April 23–27, 2018, Lyon, France. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3178876.3186035

1 INTRODUCTION
While developing apps has become easier, testing and characterizing

them remains challenging because of a dearth of tools for large-scale

testing and measurement of mobile apps. The de facto standard app

testing technique is to use “monkeys” [12]. A monkey is a simple

tool that performs random (partially configurable) inputs, operating

under the assumption that a million monkeys tapping on a million

touch screens will eventually expose faulty code.

This paper is published under the Creative Commons Attribution 4.0 International

(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC BY 4.0 License.

ACM ISBN 978-1-4503-5639-8/18/04.

https://doi.org/10.1145/3178876.3186035

Figure 1: Human input (100 users) vsmonkeyswhen playing
frozen-bubbles.

While this might be true, there are several issues. First, prior

work has shown that monkeys are not well suited for certain types

of inputs [12], e.g., filling out forms. Second, monkeys’ inputs do

not reflect those of actual app users. Figure 1 visually shows this

issue when testing “frozen bubble”, an Android game, via both real

users and monkeys. While real users focus on the part of the screen

where game play actually happens, monkeys make no distinction

and spread their efforts across the entire UI. While this might have

some advantages if exploring all code paths is the desired outcome,

it is very much a problem when looking for, e.g., the way an apps’

users access the network, understanding how users will navigate

through options/menus, or evaluating a change in functionality/UI.

For this reason, we still need humans to test applications, both

in industry and research. Unfortunately, while large-scale human

testing is (mostly) achievable for giants of industry (e.g., Apple,

Google, Facebook, Microsoft, and Amazon), many smaller develop-

ers do not have thousands of users to A/B test with, or control over

app delivery mechanisms (i.e., app stores) [3, 17]. Indeed, even so-

lutions proposed by app store operators have their own limitations

(e.g., in [17] only owned apps can be tested and users must install

them). Further, the research literature is littered with examples

where authors spend many hours manually running apps to better

understand a variety of issues [24, 32, 35].

In this paper we present CHIMP, a flexible Android app testing

system that enables quick collection of human inputs for mobile

apps. CHIMP runs apps on a server, streaming them to a browser for

real users to interact with. While users test apps, CHIMP collects a

wide range of data (user interactions, network traffic, runtime traces,

performance, etc.) as well as explicit user feedback. “Experimenters”

(e.g., app developers or researchers) can use CHIMP with apps

they want to test and specify the data they want to collect via

https://doi.org/10.1145/3178876.3186035
https://doi.org/10.1145/3178876.3186035

campaigns. CHIMP offers integration with CrowdFlower [14], along

with user validation techniques, to quickly provide large, trust-

worthy datasets. For example, the human input behind Figure 1

was obtained from 100 CrowdFlower users in just a couple of hours.

We present the design (§3) and evaluation (§4) of CHIMP with

thousands of apps and users. We analyze user interactions via a

calibration campaign to designmore useful campaigns (§5). We then

demonstrate two use cases for CHIMP showing that integrating

users into the testing loop can improve code coverage by up to 25%

(§6), and that the three times increase in network traffic volume it

generates can be used to build an app classification model which

achieves f1 scores over 0.9 in some cases. Finally, we discuss our

findings, CHIMP’s limitations, and conclude (§8).

2 BACKGROUND & RELATEDWORK
While CHIMP draws heavily from the automated testing literature,

it is designed to meet the needs of researchers in a wide variety of

contexts. In this section, we provide background on the state of the

art in automated testing tools as well as an overview of other app

behavior measurement techniques and applications.

Automated App Testing: Automated testing can be considered

a search problem where the objective is to “explore” the largest

possible set of app functionalities within a defined time span. Such

an exploration is usually measured in terms of code coverage, i.e.,
the number of lines of code in the target app that the test exercises.

[12] reviews the state of the art, evaluating 14 testing tools grouped

into 3 categories: random, model based, and systematic.
Random tools [5, 27, 38, 50] are best exemplified by the official

Android monkey [5]. They amount to a blind search through the

app being tested. Random testing tools are reasonably easy to use

and often provide pretty good coverage.

Model based [2, 9, 11, 20, 48] tools view mobile apps as a finite

automata where user actions trigger transitions between states.

Models can be extracted considering the sequence of function calls

(call graph model - CGM), the user interface layout, and interaction

between components (interface model - IM). After the model is built,

testing corresponds to exploring the space of the state machine,

terminating when all state transitions have been discovered.

Systematic exploration tools [4, 9, 28, 45] are more complicated

and use things like evolutionary algorithms in an attempt to pro-

duce inputs that improve code coverage. For example, EvoDroid [28]

uses the IM as “genes” and the CGM as space to be explored while a

fitness function optimizes code coverage and guides the exploration.

All these tools have strengths andweaknesses, but ultimately [12]

finds no tool to be superior; indeed, monkeys often beat more so-

phisticated tools in terms of code coverage. They share however an

important limitation: they are “stress test” tools only. Since no real

human input is synthesized, no information regarding actual hu-

man behavior is collected (i.e., how users react to a user interface),

nor if users consider the app performing correctly. There are also

tasks that might either be easier for, or even require, real humans,

e.g., login screens, forms, games, etc.

There are a few services that can bring humans into the app

testing loop, similar to CHIMP. The two most popular services are

offered by Amazon [3] and Google [17], and integrated into their

app stores. CHIMP is different in a few ways though. First, they are

meant to be used by an app’s developer exclusively, and therefore

not good candidates for large scale app analysis. Second, they either

require the developer to provide a mailing list or make a version of

the app available for open beta testing in their stores. Finally, these

tools are mostly oriented towards testing app compatibility with

different devices and do not provide any additional access or low

level information (e.g., traffic dumps, instrumentation, etc.) which

researchers struggle to capture at scale. Like CHIMP, Appetize [8]

provides streaming of mobile devices to browsers. However, its

focus is not measurements and experimentation, for example, it

does not provide any mechanism to acquire users or to analyze

apps at scale. There are other human-based services occupying the

same general space as CHIMP by having in-house app testers with

real devices, but scalability and pricing (e.g., [44] charges $99 per

user testing session) make it prohibitive for large scale app analysis.

Crowdsourced Systems Although not quite an automated testing

tool, Varvello et al. [46] built EYEORG, a platform for crowdsourcing

web quality of experience measurements. EYEORG presents paid

crowdsourced workers with interactive videos of web page crawls,

allowing users to provide judgments on performance in a controlled,

yet scalable environment. CHIMP is similar to EYEORG in spirit but

it provides an orthogonal service. Nevertheless, CHIMP’s evaluation

follows the validation methodology laid out by [46], which includes

using engagement estimation, and control questions (§5).

Nikravesh et al. built Mobilizer [31], a platform for performing

network measurements in a mobile environment that also leverages

crowdsourcing. The key insight of Mobilyzer is that the idea of a

“killer app” that can reach enough user penetration to be of meaning-

ful use is not very realistic. Mobilyzer is delivered as a combination

of library and service. Experimenters can design and issue experi-

ments to gain a view of network conditions across all Mobilyzer

devices. They demonstrate ease of development (“about an hour”

for a 3rd party app’s developers to integrate Mobilyzer) and demon-

strate its effectiveness by conducting crowdsourced measurements

of mobile Web performance and Video QoE.

While obviously related, Mobilyzer and CHIMP have with fun-

damentally different objectives. While Mobilyzer provides a previ-

ously unseen global view of the mobile network, CHIMP focuses

more on app and user behavior, giving researchers and developers

a different view of the mobile environment.

CHIMP is designed to complement state of the art tools, and to

offer a flexible platform to collect a rich set of data targeting human

behavior specifically. For app developers, it means that they can

quickly A-B test design and algorithmic choices before releasing an

app to an app-store. For the research community, it means it is now

possible to run experiments on apps the researcher has no control

over. Indeed, the impetus for building CHIMP was our frustration

as researchers when trying to collect mobile app interaction data

for even dozens of users, let alone hundreds or thousands.

3 CHIMP
CHIMP is made available as a web application, and users inter-

act with it via the web-client. Within the web-client, they interact

with an Android virtual phone, where mouse clicks and drags get

translated into taps and swipes.

Figure 2: CHIMP’s architecture: timeline a user session (top),
system composition (bottom).

CHIMP integrates several technologies behind the scenes to

achieve its goal of providing insights on mobile apps via both objec-

tive measurements (e.g., application runtime analysis, network traf-

fic, permissions) and feedback from users. Further, to meet many of

our goals CHIMP must scale reasonably well and be flexible enough

to support different types of analysis, number of users, and apps.

This necessitates addressing a few challenges we discuss in this

section: 1) web-client workflow, i.e., how to organize and present

tests to users, 2) selecting an effective means of virtualizing a phone

for users, 3) supporting a multi-user experimentation platform, and

4) collecting useful data for experimenters.

3.1 Web-client Workflow
Figure 2 sketches CHIMP’s architecture. As an illustrative example,

the figure includes a screenshot of what a user sees when interacting

with the YouTube app. In particular, the webpage presented to the

user is composed of a streaming area replicating the content of the

virtual phone’s display (dashed area in the figure), and a control
area allowing the user to issue specific commands to the system

(zoomed area in the figure).

There are a number of actions that must be taken before the

user can actually interact with an app, which are illustrated in

Figure 2 (top) with a timeline, along with the associated system

actions (bottom). In the following, we use this visual aid to describe

the status of the user’s interactions with CHIMP.

We define a session as the entire set of actions a user takes in

CHIMP. A session starts when the user visits CHIMP’s homepage

and presses the <Take a test> button. A welcome message is

presented, including a form to collect demographic data. While the

user is busy filling out the form, CHIMP prepares a virtual phone

(§3.2) and installs the first app. When the virtualized environment

is ready, users can press <Launch>. They are then presented with a

set of instructions on how to use CHIMP. Once the instructions are

dismissed, users can interact with their first app.

Since CHIMP allows users to interact with different apps, we

partition each session into multiple steps; one per app. The control
area lets users navigate through steps via the <Next app> and

<Finish> buttons. Specifically, users interact with the current app

until clicking one of these two buttons. After clicking one of these

two buttons, an experience feedback questionaire is presented.
If the user pressed <Next app>, the previous app is removed

from the virtual phone and a new app is installed. After filling out

the experience feedback form, users can interact with the new app.

If instead the user opted for <Finish>, the virtual phone is shut
down and the session terminates after the app experience feedback

form is completed. The control area also shows a cumulative ses-

sion duration and overall step progress (∼4 minutes and 7 apps in

Figure 2). Multiple user sessions with the same setup are logically

grouped into a campaign (details discussed in §3.3).

3.2 Android Virtual Phone
The core of CHIMP is built around the virtualization of (Android)

mobile devices. This is accomplished by instrumenting virtual ma-

chines (VM) running the Android operating system to provide the

user with an Android Virtual Phone (AVP). To maximize app com-

patibility, CHIMP should be able to 1) execute ARM instructions

(to support apps that use native binaries that target it), 2) support

OpenGL (especially for games), and 3) offer fluid interactivity. We

evaluated several existing solutions and discuss the lessons learned.

Android VM: The first obvious solution is the Android emula-

tor (Emu) which comes in two flavors: Emu-ARM and Emu-x86.

Emu-ARM refers to the original Android emulator which imple-

mented the ARM instruction set in software. Emu-ARM is known

to suffer huge performance penalties when running on x86 archi-

tectures [22], and is often replaced by Emu-x86. Notice that, despite

the name, Emu-x86 is actually a VM hosting a build of Android

targeting the x86 instruction set.

While Emu-x86 speeds up app execution, it introduces the prob-

lem of translating instructions for native binaries that target ARM.

Android apps are mostly built in Java which (in theory) does not

target specific hardware at all, but they can make use of native

code. Since ARM dominates the mobile landscape, most build sys-

tems compile to ARM native code by default, leaving x86 support

as optional. The real-world implication of this is that native x86

binaries cannot be assumed present in apps. This means that while

Emu-x86 is a good solution when developing apps, it does not fit

our needs. To deal with running ARM code on x86 chipsets, Intel

developed houdini which performs on the fly translation of ARM

to x86 instructions. Fortunately, the community-driven port of An-

droid for x86 architectures (Android-x86 [6]) has native support for

houdini [7]. We opted to directly use QEMU, a popular open source

hardware emulator and virtualizer. Using QEMU directly gives us

fine-grained control over VM RAM allocation, CPU core usage, and

supports output streaming via websockets.

While QEMU takes care of most hardware virtualization tasks,

particular attention is needed for OpenGL. QEMU supports vir-
glrenderer, a virtual GPU that provides the Android guest VM with

access to the host’s GPU for hardware accelerated graphics (i.e.,

OpenGL support), however it is unusable out of the box. Integrating

virglrenderer required us to recompile the Android-x86 image and

QEMU to enable GTK library support. Next, since QEMU emulates a

VESA-compliant VGA output device, we modified the VGA BIOS to

support WVGA resolutions found in mobile devices (e.g., 400x800).

As reported in Figure 2, each user session is associated with a

separate QEMU/Android-x86 VM, which corresponds to one virtual
phone. Overall, CHIMP’s virtualization is composed of two tech-

nologies: 1) Android-x86 to execute the Android operating system

and apps and 2) QEMU to virtualize the phone hardware.

Streaming: QEMU natively supports Spice [41] and VNC (an im-

plementation of RFB [36]), two popular streaming technologies.

Additionally, streaming can also be done via XSpice [42], a variant

of Spice which uses an X11 server. We experimented with all three

options (results not reported for brevity), by creating an HTML5

client handling the streaming from the virtual phone, i.e., the stream-

ing area in Figure 2. In the end, we opted for VNC which offered a

more fluid experience throughout our tests.

3.3 Experimentation Platform
While the AVP is a necessary component for implementing CHIMP,

it is not sufficient. CHIMP must allow experimenters to specify

campaigns and dynamically launch and manage AVPs for users.

Campaigns: As previously mentioned, user sessions are grouped

into campaigns. A campaign is a set of parameters that includes the

target number of users, the set of apps to test, how many apps per

user, if apps should be presented to users in a random or pre-set

order, the amount of time to be spent on each app, and what data

to collect (§3.4). The instructions for the campaign and interstitial

feedback forms are also customizable via JSON.
Orchestration: The different components of CHIMP are orches-

trated via a controller and scheduler (see Figure 2). The controller
tracks events issued by the web-client control area, and triggers

job scheduling. E.g., when clicking the <Next app> button the con-

troller schedules jobs to retrieve data from the virtual phone and the

web-client, and to prepare the virtual phone for the next app. The

controller is a multi-process, multi-threaded, and stateless Ruby

on Rails application served from Puma [34] webservers which run

behind an Nginx [30] reverse proxy on the server.

We use Sidekiq [40] as our job processing framework, which in

turn uses Redis to back job queues. As pictured in Figure 2, CHIMP’s

scheduler makes use of 3 queues with priorities high, default, and
low. The high priority queue is reserved for system critical jobs

that have tight scheduling deadlines (e.g., extracting code coverage

metrics over time). The default queue handles jobs related to user

experience, e.g., virtual phone booting/shutdown and app instal-

lation. Low priority jobs handle things reclaiming resources from

timed-out sessions and post-processing of campaigns for reporting.

Jobs themselves interact with AVPs via the Android Debug

Bridge (ADB), and are often chained together to perform more

complex operations. E.g., booting a virtual phone is done by chain-

ing four jobs: 1) replicating an Android image and booting it via

QEMU, 2) making the VM accessible to the user (i.e., opening ports

and configuring mappings), 3) enabling measurements (i.e., setting

up communications between the AVP and requested data collection

modules), and 4) scheduling an app installation.

3.4 Data Collection Modules
CHIMP allows the collection of data via different modules. Since

CHIMP collects data from human participants
1
we make sure to:

1) collect only the minimum data required for the system to achieve

its goals, 2) anonymize any sensitive data, and 3) inform the users

of which data is collected prior to each session. Although we intend

to expand the type of data collected in the future, for now CHIMP

supports collecting six types of data.

User interactions: The web-client collects mouse events from the

streaming area, as well as information on browser focus.
2
This

is achieved by instrumenting the web-client with JavaScript at-

tached to the HTML5 VNC streaming area. This data is crucial to

understand user behavior (e.g., identifying where users click as in

Figure 1), to validate the quality of the crowdsourced workers (§5),

or to reproduce crashes by replaying inputs. The web-client uploads

user interaction data at the end of each session step (Figure 2).

User feedback:While the virtual phone is booting, the users are

asked to provide some demographic feedback (age, gender, country,

and mobile app expertise). At the end of each session step users are

asked to provide some feedback on their experience using the app,

i.e., if the app crashed or required login, give a rating on “fun” and

“speed” of the app (on a scale of 1 to 3), and place the app in one of

several pre-defined categories (e.g., social, multimedia, or game).

App data: At the end of each session step, CHIMP retrieves the ex-

ecution history of the app (logcat on the virtual phone), to identify

exceptions or crashes (if any). Similarly, dumpsys is used to collect

app’s resource consumption (CPU, memory, disk I/O, network),

interactions with the operating system, permissions, sensor usage,

etc. App meta-data (e.g., number of downloads, category) as well as

app structure (e.g., classes, methods) are retrieved via static analysis

of apps downloaded from the Google Play store.

Runtime data: The app runtime execution (§6) is captured via

method tracing. Additionally, EMMA [16], the defacto standard of

code coverage analysis, is also supported for opensource apps. It

also allows running automated monkeys whose inputs can be used

in conjunction with humans.

Network data: CHIMP uses tcpdump to collect raw pcap files and

polls Android’s /proc/net where open network sockets are listed

along with their UID.
3
This solution requires calibration to capture

ephemeral flows (i.e., very short lived connections). In our tests,

only 1% of the flows were shorter than 100 ms, so we consider a

50 ms polling frequency as a conservative choice. We further map

UIDs to the app’s package name using the dumpsys information.

System data: A module that monitors both the whole system

health, as well as the connectivity toward each individual user

web-client and the associated virtual phone. In particular, the web-

client runs HTTP pings every 5s towards CHIMP’s webserver, and

collects frame buffer updates from the streaming area. The system

records also the current workload (e.g., virtual phones running,

memory available, etc.), as well as the time-line progress of each

individual user session using a combination of collectd [13] for
collection of system metrics and graphana [19] for visualization.

1
All data was collected in compliance with our institutional ethics guidelines.

2
We do not monitor activity on other browser tabs nor raw keyboard inputs.

3
NB: in Android each app is given a different numerical user id (UID).

Users Duration User pay # Apps # Steps

Automation - 1 day - 18,010 100

Discovery 1000 1.25 days $120 1,000 7

Calibration 100 3 hour $12 7 7

Code Coverage 1000 1.4 days $120 59 4

Trace Coverage 500 1 day $60 55 4

Traffic Classification 500 22 hours $60 76 4

Table 1: Summary of CHIMP’s campaigns. NB: CrowdFlower
charges an additional 20% processing fee.

4 IMPLEMENTATION
This section describes the details of CHIMP’s implementation. We

start by briefly reporting on the alternative choices we contem-

plated. Next, we evaluate our prototype in terms of resource con-

sumption and user experience. Finally, we discuss its limitations.

Setup:We deployed CHIMP on a server with a Dual Intel Xeon CPU

E5-2697v3 (2.60GHz), with 128 GB of RAM, and a single 7,200 RPM

hard disk with 130MB/s write throughput. To control the Android

VMs we used the default ADB implementation with automated

device detection, which is limited to a predefined range of only

15 ports. While this could be trivially extended by having CHIMP

managing the adb connections, we aim to scale CHIMP horizon-

tally by adding smaller on-demand backend machines and so the

following evaluation operates within this limit.

For Android VMs we used a customized Android-x86 image (4.4-

RC1, although we also support 6.0), which requires around 1.6 GB

after installing when using QEMU’s qcow2 image format [25]. A

copy of the image is made for each user; we experimented storing

these images both in disk and in volatile memory, i.e., a ramdisk.
For both setups we benchmarked each of QEMU’s caching policies,

but in the following we compare only the two best performing

strategies: writeback cachingwhen using disk, and no cachingwhen

storing images in RAM (using tmpfs, a RAM-based file system).

To evaluate CHIMP’s implementation, we cast our net wide by

crawling the top 500 apps per category in the Google Play store,

retrieving a total of 18,787 unique apps. For users, we use both

“synthetic” and human users. We created synthetic users with Sele-
nium [39], a framework for automating web browser interaction,

while we recruited 1K real users on CrowdFlower. We leverage syn-

thetic users to cover the full set of apps (at no cost) while stressing

our implementation, i.e., we launch up to 15 simultaneous synthetic

users. We leverage real users to test a subset of apps (1K randomly

selected, non-crashing apps) and to collect explicit feedback on

system performance. A summary of these two campaigns appears

in Table 1 as “Automation” and “Discovery,” respectively.

App Compatibility: The first major question we aim to answer is

simply how many real apps does CHIMP support? Using the app

data collection module we find that while 13,374 of the apps in

the campaign installed fine, 474 failed to install, and 4,939 failed

to be brought to the foreground of the AVP (i.e., the app did not

successfully launch). Failing to install indicates that the app binary

is broken, incompatible with hardware, or it takes too long to install

(we enforce an upper bound of 40s for app installation). Failing

to be brought to the foreground is often a sign of a crashing app.

Regardless, 71% of appswere successfully brought to the foreground,

indicating that CHIMP has pretty good support for real-world apps

(compare to the “official” mechanism [47] for running Android apps

in a browser which supports 58.7% of tested apps [26]).

��

��

���

���

���

���

���

� � � � ��

�
���
��
�
���
�
��
�
�

���

��

���

���

���

���

����

� � � � ��

�
���
��
�
���
�
��
�
�

����

��
��
���
���
���
���
���
���
���

� � � � ��

�
���
��
�
���
�
��
�
�

������

��

��

���

���

���

���

���

� � � � ��

�
���
��
�
���
�
��
�
�

���

��

���

���

���

���

����

� � � � ��

�
���
��
�
���
�
��
�
�

����

��
��
���
���
���
���
���
���
���

� � � � ��

�
���
��
�
���
�
��
�
�

������

Figure 3: CPU, disk, and RAM utilization as a function of
number of concurrent users. Rows are HDD and RAM based
disks, respectively.

Resource utilization: Next, to get an idea of how our design

choices play out in terms of resource usage, Figure 3 plots the dis-

tribution of CPU, disk, and RAM utilization as recorded by CHIMP

during our synthetic user campaign. Notice that for disk, the utiliza-

tion corresponds to throughput of the disk. Our server has plenty

of CPU available to sustain the workload, e.g., in the worst case (15

concurrent users), we see a maximum of 30% CPU utilization. In-

stead, CHIMP is limited by disk I/O, e.g., up to 100% disk utilization

(130MB/s) with only 4 concurrent VMs and a physical disk. tmpfs

alleviates this contention and allows CHIMP to scale up to 15 con-

current VMs. Here, RAM usage is linear since resource consumption

is driven by the size of Android images (previously on disk) and

the RAM allocated to the VM itself. We saw a maximum of 10 and

7 Mbps network transmission and reception rates, respectively.

Based on the analysis above, CHIMP uses tmpfs and the con-

troller (§3.3) ensures that system load remains below configurable

thresholds. This means that new users might be put on hold when

attempting to start a new session if not enough resources are avail-

able. Such functionality is key when regulating the user load from

CrowdFlower since it provides no API to request a user arrival

rate. However, jobs can be started, paused, and stopped at the job

owner’s discretion and we engineered the CHIMP controller to

regulate system workload by using this “trick.”

Service latency: To benchmark CHIMP’s performance we col-

lected the boot and app install times for the synthetic users using

tmpfs. To summarize, on average, when a user starts a new session

he faces a waiting time of about 36 seconds: 21 seconds to boot (at

least 12s less than from disk) and on average 15 seconds to install

and launch apps. While the boot time is stable, installing an app

varies with the app size, taking between 10 seconds for small apps

(a few hundred KB) to 35 second for large apps (hundreds of MB).

User experience: Here, we see how “fast” app interaction felt to

users and if real users were able to trigger any crashes that the

synthetic users did not detect. Next, we also investigate how many

users had previously used each app, how fun they thought each

app was, and whether or not they saw ads within the app.

Figure 4 plots the Cumulative Distribution Function (CDF) of

the mean question scores reported by users, per app, for the 1,000

Google Play Store apps tested. Binary questions (i.e., yes/no) are

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Fraction 'yes' responses

C
D

F

question

ads
crash
login
tried

0.00

0.25

0.50

0.75

1.00

1.0 1.5 2.0 2.5 3.0
Mean score

C
D

F

question

fun
speed

Figure 4: CDF of mean question scores
per app for 1,000 tested apps.

App 1 App 2 App 3 App 4 App 5 App 6 App 7
0

50

100

150

200

250

300

350

T
im

e
 s

p
e
n
t
o
n
 a

p
p
 (

s
e
c
)

Figure 5: Boxplots of time spent on
each app.

1 10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

Number of actions (#)

C
D

F
 (

0
−

1
)

click

move

Figure 6: CDF of actions (clicks and
move) per user.

on the left while questions scored on a scale of 1 to 3 are on the

right. From the left plot, we can see that most of the apps were new

to our users (90% of apps tested had a mean “tried before” score

less than 0.5), that most users reported most apps as not having
ads/requiring a login. While we see no crashes reported for most

of the apps, about 15% of apps have a majority of users claiming

crashes. From the plot on the right, we see that users found the

apps a bit boring with about 50% receiving a mean score less than

2.0. Regardless, we see that users felt that CHIMP was providing at

least a “decent” app experience: over 60% of apps receive at least

a 2.0 mean score with respect to speed. Unfortunately, we could

not reach a conclusive correlation between system metrics and

user’s reported app experience. This is a complicated subject since

multiple factors need to be considered, e.g.., user connectivity, apps

characteristics (e.g., unresponsive apps due to bad design, resource

consumption, and/or CDN content policy retrieval), etc. We leave a

more careful characterization for future work.

Limitations:While CHIMP does support many of the top apps on

the Google Play Store, despite its flexible design, there are some

limitations. The most obvious is due to the lack of a physical mo-

bile device which limits testing with respect to sensors, mobility,

debugging for specific device types or multi-gesture touches. Ad-

ditionally, its virtualization targets Android specifically, and does

not support iOS or Windows Mobile. Next, there are some apps for

which CHIMP is a sub-par platform. For example, certain types of

apps (e.g., background services or boring apps) might not stimulate

users enough for them to provide meaningful interactions. Sec-

ond, there are many apps whose usage requires an account or only

becomes useful with some sort of network effect (e.g., Facebook).

Although we could have created accounts that were automatically

included in AVPs, not only it would require manual work, but it

might also violate service provider terms of services, while not

necessarily representing reality. That said, we expressly instruct

users to never enter personal information into apps.

Finally, there are some types of experimentation that CHIMP is

just not well suited for. For example, understanding mobile network

conditions is better left to tools like Mobilyzer [31]. Additionally,

certain experiments may be more longitudinal in nature, while

CHIMP’s AVPs are bound to a session that will eventually time out.

5 CAMPAIGN CALIBRATION
Apart from the engineering challenge to build CHIMP, a more

fundamental challenge is dealing with real people. To collect mean-

ingful data, we need to engineer campaigns people will be happy

to take, e.g., select the right number of apps per session. We also

need to validate input to avoid random clickers or distracted users.

In this section, we use CHIMP to get insights on how campaigns

should be structured. Accordingly, we run a “calibration” campaign

(Table 1) with sessions containing 7 steps, i.e., 6 apps plus a “control”

one (see §5.2 for details), presented in random order. The apps we

test are: 1) adobe sketchbook, an app to draw and paint images, 2) di-
videandconquer (an open source game), 3) frozenbubble (an open

source game), 4) pou (a popular, closed source game), 5) youtube,
the most popular app to watch videos, and 6) buzzfeed, a news

aggregator app. These apps were chosen relatively arbitrarily with

the goal of having a fairly diverse and popular set of apps.

The calibration campaign consists of 100 CrowdFlower users.

We request only users that are “historically trustworthy” which

comes at the cost of longer recruitment time (3 hours at a cost of

$12). Users exhibit roughly a 75/25% male/female gender split, and

they are located in 30 countries (Venezuela being the most popular).

We do not enforce a minimum number of steps that users should

take, leaving them free to skip steps or even finish without having

tested all 7 apps. Similarly, we do not impose any minimum time a

user should spend on a given step, the goal being to estimate how

much work each user is willing to do “naturally.”

In the remainder of this section, we first investigate user behavior

while interactingwith CHIMP’swebsite, with the goal of identifying

guidelines for future measurement campaigns (§5.1). Then, we

compare techniques for discarding unreliable responses (§5.2).

5.1 User Behavior
We start by investigating how users navigate through a session.

Although not shown due to space limitations, 80% of the users

interact with all 7 apps and only 7% of the users interact with a

single app. Regardless of their progress in a session, 100% of the

users click the <Finish> button and redeem their completion code

(required for payment). It is worth reporting that we reached these

(high) utilization numbers through various iterations on the web-

site’s design. Specifically, the addition of a progress bar (Figure 2)

generated an impressive 40% improvement.

Next, we investigate how much time users spend per app (Fig-

ure 5). Note that we subtract any time the user spent interacting

with a other browser tabs. Users tend to spend a decreasing amount

of time on subsequent apps, e.g., the median decreases from 105s

(first app) down to 30s (last 3 apps). The third app is not an excep-

tion to this trend but rather an artifact of our methodology. While

regular apps are placed randomly, we opted to show a control app

(§5.2) in the middle of the session to increase the chance of users

testing it. The control app is very simple, it is thus realistic that

users spend little time on it.

Finally, we quantify how much users interact with apps via

mousemovements and clicks. Figure 6 shows the CDF of the number

of mouse clicks/movements per user restricted to the virtual phone

area. Overall, the figure shows about 10% of “inactive” users, i.e.,

users with neither clicks nor movements. These users, as well as

users with very few clicks, quickly navigate through CHIMP to

redeem a payment, e.g., none of them test the 7 apps.

Based on the analysis above, we choose to structure our future

campaigns with four apps (three plus control). Our rationale is

twofold: 1) maximize the number of users who will complete a full

session and 2) increase the chance the user will spend meaningful

time on an app. Apps are presented in random ordered to make

sure they get comparable amount of user time.

5.2 Crowdsourcing and Response Validation
No standardized methodology exists to determine the quality of a

crowdsourced user. CHIMP leverages CrowdFlower’s help to select

“historically trustworthy” users. We also draw inspiration from the

validation methodology in [46] as it dealt with similar issues (§2).

Specifically, CHIMP leverages “engagement” as an indication

of user quality. We define engagement by the amount of mouse

clicks and movements detected in the virtual phone area. To avoid

setting arbitrary thresholds, we discard users who never interact

with the phone area, i.e., about 10% of the users (Figure 6). Clearly,

users with a single click should also be discarded but we leverage

additional filtering techniques to better capture such users.

We also use control questions, i.e., questions to which the answer

is known a priori [21], to identify low quality users. We developed

an Android app that simply asks participants to press three num-

bered buttons in either ascending or descending order. Failure to

produce any of the requested order, or to even press a button, is

considered as a sign of a low quality user. We implemented the

control as an Android app, rather than a simple question within

the interstitial forms, since it is a bit more realistic. In fact, users

need to interact with it in the same way as they do with other apps

and they might face a similar frustration due to app loading time.

Only 3% of the users fail the control, which indicates it was

well designed; however, 22% of users skip the control app. Users

failing the control are labeled as low quality and discarded (we still

pay these users). Users that skipped it are given a second chance

for redemption: they are not discarded if they show high level of

engagement with other apps. Specifically, we require such users to

have at least 100 clicks across the entire session. This filtering rule

introduces an additional 11% of users that are labeled as low quality,

and fully captures low engagement users discussed above. The

other campaigns in this paper exhibited the same rate of attrition.

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

Method Coverage

C
D

F

Type

Combined

Human

Monkey

Figure 7: CDFofmethod coverage achieved byhumans,mon-
keys, and CHIMP’s combination of both.

To summarize, we use a “control” Android app of our own design

to identify low quality users within a CHIMP’s campaign. We also

use engagement, i.e., a minimum of 1 mouse click in the virtual

phone area, to spot users that quickly navigate through CHIMP to

just redeem their payment. Finally, we combine the two rules for

users that skipped the control: we require at least 100 mouse clicks

not to discard the user.

6 APP RUNTIME ANALYSIS
We now show how CHIMP’s advanced runtime analysis can be used

to characterize app behavior using UI interactions. More specifi-

cally, we use this module to calculate the amount of an app’s code

triggered by both human and monkey interaction. While we expect

humans to perform better for usability tests with specific tasks

(e.g., buying a product in a shopping app) and for bypassing known

monkey limitations (e.g., login screens, forms, and timing events in

interactive apps), we expect monkeys to perform better in exploring

overall app code, mostly due to their higher input frequency.

Code coverage is a widely used metric in UI automation liter-

ature [2, 4, 11, 27] to compare different exploration approaches.

Unfortunately, research literature tends to focus on opensource ap-

plications, while CHIMP must also operate with closed-source apps,

often with orders of magnitude more complexity. This limitation

is mostly due to the ease of analyzing open-source apps’ code and

the existence of coverage instrumentation tools such as EMMA [16].

Standard build tools (which require source code) can be used to

run unit tests and calculate coverage using EMMA. Unfortunately,
to get the coverage of a third party app or to use EMMA with the

monkey, modifications to the app’s code are required. Nevertheless,

we analyzed 59 apps used in Choudhary et al.’s [12] benchmark,

which in turn are taken from previous literature [2, 4, 11, 27], and

tested them with real users (Code Coverage in Table 1). We used

a similar experiment methodology as [12] but with ten, 6 minute

([12] claims no significant coverage improvement after 5 minutes)

monkey runs for each app; humans interacted with the app for 84s

on average. We found that humans improved coverage over the

monkey for around 40% of apps, while the combination of human

and monkey interactions improved coverage for over 60% of apps.

Unfortunately, upon closer inspection we noticed that these apps

are very simple (a median of 44.5 classes in their main packages)

with very limited interactivity (a median of only 4 Activities
4
), and

at least 2 apps were completely non-interactive.

4
Activities are responsible for displaying the interactive windows presented to users.

●● ●

●●

● ● ●● ●

●●● ●●●●●●● ●●● ●●● ●● ●● ●●●● ●●● ● ●● ●●●●●●●●

● ●●● ●● ●●● ●● ●●● ●●●●● ● ●

●● ●●●●● ●●●●●●●●● ●●● ●●●●● ●● ●

FOOD
PERSONALIZATION

TRAVEL
ART

SOCIAL
ENTERTAINMENT

HEALTH
NEWS

SPORTS
GAME

EDUCATION
HOUSE

SHOPPING
VEHICLES

LIFESTYLE
BOOKS
TOOLS

PARENTING
FAMILY

BUSINESS
WEATHER

BEAUTY

0.00 0.25 0.50 0.75 1.00

Jaccard Index Distribution

C
at

eg
or

y

Figure 8: Jaccard similarity indexes between human and
monkey runs, per category.

To address these limitations, CHIMP uses a different approach.

In Android, each app runs on a dedicated VM that opens a debug-

ger port using Java’s Debug Wire Protocol (JWDP) managed by

the Dalvik Debug Monitor (DDM). As long as the device is set as

debuggable (ro.debuggable property), it is possible to activate

method tracing capabilities. To this end, we implemented our own

tool to open a connection directly to the VM’s debugger (using an

Android platform library called ddmlib [1]) and collect traces on a

given app. After collecting the app traces, we parse the output of

dmtracedump, which generates call-stack diagrams from traces, to

retrieve the runtime method invocations of the app. Additionally,

we also decompile the original app, retrieving its method signatures,

including argument and return types (to address method overload-

ing). Matching the class and method signatures of the traces to

those extracted from the app binary allows us to calculate the class

and method coverage of the run. We note that while this method al-

lows us to calculate coverage of apps without source code access, it

does have shortcomings, i.e., it cannot provide code coverage based

on lines of code, and thus coverage numbers might not perfectly

map to those produced by EMMA (e.g., lines of code per method tend

to follow a skewed distribution).

To test our tracing mechanisms with popular apps, we collected

the top 100 most downloaded apps across Google Play store cate-

gories (except widgets, wear, and demo due to low interactivity).

From these, we filtered those requiring login or unavailable hard-

ware (e.g., apps using the camera or the device speakers), ending

up with 55 apps (Trace Coverage in Table 1). We note that humans

could be given login accounts, but we decided to perform a fair

comparison with the monkeys. These apps have a median of 11,532

classes, 73,958 methods, and 39 activities (up to 256 activities); more

than one order of magnitude higher than the open-source app set.

Contrary to our initial expectations, humans performed well in

regards to code coverage compared to monkeys (Figure 7). Humans’

median coverage outperformedmonkeys for 63.6% of app categories,

and by combining both humans and monkeys, we can improve

coverage by up to 25%. We also observe that individual humans and

monkeys covered code tend to be quite different, with a similarity

lower than 0.5 for 59.1% of the categories (Figure 8).

The main take-away is two fold. First, CHIMP can effectively

integrate and combine the benefits of different UI interaction tools

with competing code exploration techniques. Second, CHIMP’s

tracing can be useful to benchmark different UI automation tech-

niques with the benefit of being able to test real, unmodified market

applications. Furthermore, its tracing capabilities provide us with a

��

����

����

����

����

����

����

����

����

����

�����

��� ����� ������
������

����
����

���������
��������
�����

��
��
��
�
�
�
��
�
��
�
�
�

�����

��

����

����

����

����

����

����

����

����

����

�����

��� ����� ������
������

����
����

���������
��������
�����

��
��
��
�
�
�
��
�
��
�
�
�

������

Figure 9: Comparing per-appnumber of flows in “traffic clas-
sification” campaign.

better understanding of app behavior and its inclusion motivates

the use of CHIMP for other purposes, e.g., extending recent malware

detection tools [29] to use runtime analysis instead of performing

static analysis only. CHIMP’s traces could also be used to train

better UI automation tools that interact more like real users.

7 APP CLASSIFICATION
In this section, we showcase how to take advantage of the network

data collected by CHIMP (pcap files and ground truth collected

by polling /proc/net) to create a per-app traffic classifier. Many

solutions in the literature propose using HTTP meta-data like host-

name and user-agent [10, 43, 49], but such approaches are stymied

by the increasing adoption of HTTPS. Instead, inspired by recent

work [23, 33, 51], we use CHIMP to create “app signatures”, i.e.,

derive a set of network transport level features (packet sizes, hand-

shake characteristics, hostnames, etc.) that uniquely identify each

app. We first investigate apps based on their network traffic (§7.1).

We then use this characterization to compare real users with respect

to monkeys. Next, we use the knowledge gained to build a traffic

classifier and evaluate its effectiveness (§7.2).

7.1 Traffic Characterization
The used dataset was collected from a campaign with 75 apps, 4

steps per session presented in random order, and 500 users who

spent about 100s per app (“Traffic Classification” in Table 1). Pcap

files are processed using Tstat [15], an open source passive traffic

flow analyzer. Tstat generates per-flow logs, i.e., it rebuilds TCP con-

nections based on the exchanged packets, and for each connection

reports basic information, e.g., (srcIP, srcPort, dstIP, dstPort) tuples,

time of creation, duration, general stats (total bytes/pkts, RTT, TCP

handshake duration, TLS handshake duration, etc.), and metadata

(hostname for HTTP requests, TLS Server Name Indication, etc.)

Figure 9 (left) shows the distribution of the number of flows per

app as boxplot. To make things a bit more readable, we put apps

into one of four groups based on their category from the Google

Play Store: games (10 apps), social and video players (21), news

and education (21), and lifestyle/shopping/sports (24). We first note

how each group has a median of about 300 flows. That said, while

the distribution of three of the groups is heavy tailed, apps in the

games group tend to have less traffic.

As expected [18, 37], we find traffic to be predominantly HTTPS.

Most app groups have over 70% of their traffic encrypted, with

news and education apps having the least (∼60%). We additionally

Appname Categ. Downl. (M) Train (%) Prec. Recall

com.bambuna.podcastaddict news 5-10 1184 (15.6) 95.0 93.9

com.quvideo.xiaoying video 100-500 972 (12.8) 82.4 87.2

com.zeptolab.ctr.ads game 100-500 844 (11.1) 88.5 87.7

it.pinenuts.rassegnastampa news 1-5 799 (10.5) 78.5 82.9

com.mobilonia.appdater news 1-5 748 (9.8) 79.3 73.4

com.miniinthebox.android lifestyle 1-5 690 (9.1) 97.9 95.8

com.Love.Collage.Photo.Frames lifestyle 5-10 668 (8.8) 62.6 69.3

com.eisterhues_media_2 sports 1-5 648 (8.5) 87.6 81.3

com.topps.kick sports 1-5 563 (7.4) 96.6 96.8

com.mcdonalds.android lifestyle 1-5 447 (5.9) 92.5 88.9

Table 2: Top-10 apps with respect to number of flows, and
prediction accuracy of a Random Forest model.

find that SNI is not used in ∼28% of the flows. SNI is a TLS exten-

sion that lets the client indicate, during the TLS handshake, the

server’s hostname it needs to talk to, and is commonly used by deep

packet inspection solutions. This indicates that SNI-based traffic
classification has limited applicability to mobile traffic.

Next, have monkeys run the same 75 apps. The monkeys per-

form 10 runs of 6 min each for each app, i.e., we intentionally set

up monkeys to run longer than the aggregated workload done by

CHIMP users. Figure 9 (right) summarizes the network flow anal-

ysis from monkey generated traffic. Despite the favorable set up,

monkeys produce only 30% of the traffic volume of real users. In

particular, we note how the games group has the least number of

flows. Indeed, the random nature of monkey input is unsuitable for

mimicking human behavior for this category of apps.

7.2 App Classifier
Dataset Preparation: Our goal is to leverage per-flow and -packet

features to train a model for each app. An accurate model cannot be

built for apps with little traffic. When ranking apps by their number

of flows, the top-10, top-20, and top-30 apps represent 31%, 51%,

and 66% of the overall traffic, respectively, and over 400 flows. We

thus limit experimentation to the top-30 apps since they capture

the majority of traffic in our dataset.

The number of features for the model is another important pa-

rameter. In our case, we use the per-flow stats provided by Tstat,

but enabled reporting of per-packet level information. We thus

need to decide how many packets should be used per-flow. We find

that ∼80% of flows carry less than 10 packets (detailed analysis

omitted due to space limitation) which we adopt as a threshold

when extracting features. By coupling per-packet features with

those provided by Tstat, we end up with 127 features for each flow.

Note this seemingly large number of features is because metrics

are reported separately for each direction. E.g., we extract the size

of the first 10 outgoing packets and 10 incoming packets separately.

Finally, each flow in the Tstat logs is mapped to the ground truth

provided by the polling of /proc/net.
Algorithm Tuning: We use the Random Forest algorithm, which

combines multiple Decision Trees to mitigate over fitting. We con-

figured the algorithm to use 50 trees (we do not observe improve-

ments in prediction quality with larger values). We consider a 30%

split, i.e., 70% of the samples for each app are used for training and

the rest for testing We leave the training set unbalanced, while we

balance the test set to make use of the standard prediction metrics

Precision, Recall, and f1 score (also known as f-measure). Finally, for

each scenario below, we take 10 random 30/70 splits and average

the prediction indexes across the 10 tests.

�
�
�
��
�
��
�
�
��

������������������������������������

����� ����� �����

��

����

����

����

����

����

����

����

����

����

��

� � �� �� �� �� ��

Figure 10: Average per-app f1 score when increasing the
number of target classes.

Modeling: Table 2 lists the top-10 apps in our dataset and the accu-

racy when classifying them. These apps are popular (most of them

have over 1M downloads), and span several different categories.

The model achieves Precision and Recall above 70% for most apps.

Further stressing the classifier, Figure 10 compares accuracy

when classifying 10, 20, and 30 apps, respectively. While we plot

only the f1 score for readability, results for Precision and Recall are

similar. As expected, the accuracy decreases when increasing the

number of apps, but the drop is minimal. On average, it moves from

87% when classifying the top-10 to 78% when classifying the top-30.

Given the unbalanced nature of our dataset, increasing the number

of apps reduces the size of the testing set to keep it balanced across

apps, but results indicate this effect does not strongly impact overall

accuracy, i.e., the model indeed “fingerprints” each app.

8 CONCLUSION
In this paper we presented CHIMP, a system that enables large scale,

human testing of mobile apps. We described in detail the virtual

phone environment via which users can interact with Android

from their browser, as well as the experimentation platform and

data collection modules that make CHIMP a complete system for

large-scale app testing with real humans and UI automation tools.

Although CHIMP has some limitations with respect to input (e.g.,

multi-touch gestures) and hardware (e.g., sensors), an interesting

research direction would be to perform a comprehensive study of

how user interactions differ when using real mobile devices.

CHIMP achieves its scale in part by integrating with paid crowd-

worker services like CrowdFlower. After evaluating CHIMP, we

performed a system calibration that resulted in guidelines for de-

signing and executing CHIMP experiments. Next, we used CHIMP’s

advanced runtime tracing mechanisms to compare humans to the

“monkey” UI automation tool, both in terms of code coverage and

similarity. We have found that CHIMP successfully leverages the

wisdom of the crowd. Its users outperformed the monkey for over

60% of the tested app categories, while CHIMP’s combined coverage

(monkey and human) improved for the majority of apps, with cov-

erage increasing by up to 25%. Finally, we used CHIMP to capture

network traffic generated by apps with the goal of building a traffic

classifier. We found that while monkey inputs were insufficient for

generating usable traffic (up to 3 times less traffic volume), a ran-

dom forest classifier built using CHIMP generated data could reach

f1 scores of above 0.9. Overall, CHIMP shows both the feasibility
and applicability of keeping humans in the app testing loop.

REFERENCES
[1] 2017. DDMlib: APIs for talking with Dalvik VM. (2017). https://mvnrepository.

com/artifact/com.android.ddmlib/ddmlib.

[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M. Memon. 2012. Using GUI Ripping for Automated

Testing of Android Applications. In Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2012). ACM, New York,

NY, USA, 258–261. https://doi.org/10.1145/2351676.2351717

[3] Amazon. 2016. Live App Testing. (2016). https://developer.amazon.com/

live-app-testing.

[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-

mated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (FSE ’12).
ACM, New York, NY, USA, 59:1–59:11. https://doi.org/10.1145/2393596.2393666

[5] Android. 2017. UI/Application Exerciser Monkey. (2017). https://developer.

android.com/studio/test/monkey.html.

[6] Android-x86. 2017. Android-x86 Open Source Project Announcement. (2017).

http://www.android-x86.org/.

[7] Android-x86. 2017. Houdini Source Tree. (2017). https://sourceforge.net/p/

android-x86/vendor_intel_houdini/ci/kitkat-x86/tree/.

[8] Appetize.io. 2017. Appetize.io. (2017). https://appetize.io/.

[9] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-first Exploration

for Systematic Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA ’13). ACM, New York, NY, USA, 641–660. https://doi.org/

10.1145/2509136.2509549

[10] Pedro Casas, Pierdomenico Fiadino, and Arian Bär. 2014. Understanding HTTP

Traffic and CDN Behavior from the Eyes of a Mobile ISP. In Proc. Passive and
Active Measurement (PAM).

[11] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of

Android Apps with Minimal Restart and Approximate Learning. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’13). ACM, New York, NY, USA,

623–640. https://doi.org/10.1145/2509136.2509552

[12] S. R. Choudhary, A. Gorla, and A. Orso. 2015. Automated Test Input Generation

for Android: Are We There Yet? (E). In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on. 429–440. https://doi.org/10.

1109/ASE.2015.89

[13] Collectd. 2017. The system statistics collection daemon. (2017). https://collectd.

org/.

[14] Crowdflower. 2017. Crowdsourcing platform. (2017). https://www.crowdflower.

com/.

[15] Telecommunication Networks Group Politecnico di Torino. 2017. Tstat website.

(2017). http://tstat.polito.it.

[16] EMMA. 2017. EMMA: a free Java code coverage tool. (2017). http://emma.

sourceforge.net/.

[17] Google. 2017. Firebase Test Lab for Android. (2017). https://firebase.google.com/

docs/test-lab/.

[18] Google. 2017. HTTPS at Google – Google Transparency Report. (2017).

https://www.google.com/transparencyreport/https.

[19] Grafana. 2017. The open platform for analytics and monitoring. (2017). https:

//grafana.com/.

[20] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.

2014. PUMA: Programmable UI-automation for Large-scale Dynamic Analysis

of Mobile Apps. In Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’14). ACM, New York, NY,

USA, 204–217. https://doi.org/10.1145/2594368.2594390

[21] Tobias Hossfeld, Christian Keimel, Matthias Hirth, Bruno Gardlo, Julian Habigt,

Klaus Diepold, and Phuoc Tran-Gia. 2014. Best Practices for QoE Crowdtesting:

QoE Assessment With Crowdsourcing. Trans. Multi. 16, 2 (Feb. 2014).
[22] Gael H. (Intel). 2013. Performance Results for Android Emulators - with and

without Intel HAXM. (2013). https://goo.gl/D6rUf2.

[23] Maciej Korczynski and Andrzej Duda. 2014. Markov chain fingerprinting to

classify encrypted traffic. In Proc. IEEE INFOCOM.

[24] Christophe Leung, Jingjing Ren, David Choffnes, and Christo Wilson. 2016.

Should You Use the App for That?: Comparing the Privacy Implications of

App- and Web-based Online Services. In Proceedings of the 2016 ACM on In-
ternet Measurement Conference (IMC ’16). ACM, New York, NY, USA, 365–372.

https://doi.org/10.1145/2987443.2987456

[25] Linux-KVM. 2017. Qcow2 image format. (2017). https://www.linux-kvm.org/

page/Qcow2.

[26] ARC Welder Official Compatibility List. 2017. goo.gl/Q0fy3m. (2017).

[27] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input

Generation System for Android Apps. In Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York, NY,

USA, 224–234. https://doi.org/10.1145/2491411.2491450

[28] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented

Evolutionary Testing of Android Apps. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). ACM,

New York, NY, USA, 599–609. https://doi.org/10.1145/2635868.2635896

[29] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-

faro, Gordon Ross, and Gianluca Stringhini. 2016. MAMADROID: Detecting

Android Malware by Building Markov Chains of Behavioral Models. arXiv
preprint arXiv:1612.04433 (2016).

[30] NGINX. 2017. High Performance Load Balancer, Web Server, & Reverse Proxy.

(2017). https://www.nginx.com/.

[31] Ashkan Nikravesh, Hongyi Yao, Shichang Xu, David Choffnes, and Z. Morley

Mao. 2015. Mobilyzer: An Open Platform for Controllable Mobile Network

Measurements. In Proc. ACM MobiSys. 389–404.
[32] Lucky Onwuzurike and Emiliano De Cristofaro. 2015. Danger is My Middle

Name: Experimenting with SSL Vulnerabilities in Android Apps. In Proceedings
of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks
(WiSec ’15). ACM, New York, NY, USA, Article 15, 6 pages. https://doi.org/10.

1145/2766498.2766522

[33] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-

nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet

Scale. In Proc. Network & Distributed System Security Symposium (NDSS).
[34] Puma. 2017. A Modern, Concurrent Web Server for Ruby. (2017). http://puma.io/.

[35] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.

2016. ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic.

In Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’16). ACM, New York, NY, USA, 361–374.

https://doi.org/10.1145/2906388.2906392

[36] T Richardson and J Levine. 2011. The Remote Framebuffer Protocol. (2011).

https://tools.ietf.org/html/rfc6143.

[37] Global Internet Phenomena Sandvine. 2016. Spotlight: Encrypted Internet Traffic.

(2016). https://www.sandvine.com/trends/encryption.html.

[38] Raimondas Sasnauskas and John Regehr. 2014. Intent Fuzzer: Crafting Intents

of Death. In Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing, Debugging, and
Analytics (PERTEA) (WODA+PERTEA 2014). ACM, New York, NY, USA, 1–5.

https://doi.org/10.1145/2632168.2632169

[39] Selenium. 2017. Web Browser Automation. (2017). http://www.seleniumhq.org/.

[40] Sidekiq. 2017. Simple, efficient job processing for Ruby. (2017). http://sidekiq.org.

[41] Spice. 2017. Spice. (2017). https://www.spice-space.org/.

[42] Spice. 2017. Xspice. (2017). https://www.spice-space.org/xspice.html.

[43] Alok Tongaonkar, Shuaifu Dai, Antonio Nucci, and Dawn Song. 2013. Understand-

ing Mobile App Usage Patterns Using In-app Advertisements. In Proc. Passive
and Active Measurement (PAM).

[44] UserTesting. 2017. User Experience Research Platform. (2017). https://www.

usertesting.com/.

[45] Heila van der Merwe, Brink van der Merwe, and Willem Visser. 2012. Verifying

Android Applications Using Java PathFinder. SIGSOFT Softw. Eng. Notes 37, 6
(Nov. 2012), 1–5. https://doi.org/10.1145/2382756.2382797

[46] Matteo Varvello, Jeremy Blackburn, David Naylor, and Kostantina Papagiannaki.

2016. EYEORG: A Platform For Crowdsourcing Web Quality Of Experience

Measurements. In Proceedings of the 12th International on Conference on emerging
Networking EXperiments and Technologies. ACM, 399–412.

[47] Google ChromeARCWelder. 2017. https://developer.chrome.com/apps/getstarted_arc.

(2017).

[48] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-Box Approach for Auto-

mated GUI-Model Generation of Mobile Applications. In Fundamental Approaches
to Software Engineering, Vittorio Cortellessa and DÃąniel VarrÃş (Eds.). Num-

ber 7793 in Lecture Notes in Computer Science. Springer Berlin Heidelberg,

250–265. http://link.springer.com/chapter/10.1007/978-3-642-37057-1_19 DOI:

10.1007/978-3-642-37057-1_19.

[49] Yao, Hongyi and Ranjan, Gyan and Tongaonkar, Alok and Liao, Yong and Mao,

Zhuoqing Morley. 2015. SAMPLES: Self Adaptive Mining of Persistent LExical

Snippets for Classifying Mobile Application Traffic. In Proc. ACM MobiCom.

[50] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. DroidFuzzer: Fuzzing

the Android Appswith Intent-Filter Tag. In Proceedings of International Conference
on Advances in Mobile Computing & Multimedia (MoMM ’13). ACM, New York,

NY, USA, 68:68–68:74. https://doi.org/10.1145/2536853.2536881

[51] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger P. Yu, and Martin Abadi. 2012. Host

Fingerprinting and Tracking on the Web: Privacy and Security Implications. In

Proc. Network & Distributed System Security Symposium (NDSS).

https://mvnrepository.com/artifact/com.android.ddmlib/ddmlib
https://mvnrepository.com/artifact/com.android.ddmlib/ddmlib
https://doi.org/10.1145/2351676.2351717
https://developer.amazon.com/live-app-testing
https://developer.amazon.com/live-app-testing
https://doi.org/10.1145/2393596.2393666
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
http://www.android-x86.org/
https://sourceforge.net/p/android-x86/vendor_intel_houdini/ci/kitkat-x86/tree/
https://sourceforge.net/p/android-x86/vendor_intel_houdini/ci/kitkat-x86/tree/
https://appetize.io/
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/ASE.2015.89
https://collectd.org/
https://collectd.org/
https://www.crowdflower.com/
https://www.crowdflower.com/
http://emma.sourceforge.net/
http://emma.sourceforge.net/
https://firebase.google.com/docs/test-lab/
https://firebase.google.com/docs/test-lab/
https://grafana.com/
https://grafana.com/
https://doi.org/10.1145/2594368.2594390
https://goo.gl/D6rUf2
https://doi.org/10.1145/2987443.2987456
https://www.linux-kvm.org/page/Qcow2
https://www.linux-kvm.org/page/Qcow2
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2635868.2635896
https://www.nginx.com/
https://doi.org/10.1145/2766498.2766522
https://doi.org/10.1145/2766498.2766522
http://puma.io/
https://doi.org/10.1145/2906388.2906392
https://tools.ietf.org/html/rfc6143
https://doi.org/10.1145/2632168.2632169
http://www.seleniumhq.org/
http://sidekiq.org
https://www.spice-space.org/
https://www.spice-space.org/xspice.html
https://www.usertesting.com/
https://www.usertesting.com/
https://doi.org/10.1145/2382756.2382797
http://link.springer.com/chapter/10.1007/978-3-642-37057-1_19
https://doi.org/10.1145/2536853.2536881

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Chimp
	3.1 Web-client Workflow
	3.2 Android Virtual Phone
	3.3 Experimentation Platform
	3.4 Data Collection Modules

	4 Implementation
	5 Campaign Calibration
	5.1 User Behavior
	5.2 Crowdsourcing and Response Validation

	6 App Runtime Analysis
	7 App Classification
	7.1 Traffic Characterization
	7.2 App Classifier

	8 Conclusion
	References

