An Empirical Study of Android Alarm Usage for
Application Scheduling

Mario Almeida', Muhammad Bilal®,
Jeremy Blackburn?, and Konstantina Papagiannaki?

! Universitat Politecnica de Catalunya,
mario.almeida@est.fib.upc.edu
2 Telefonica Research

Abstract. Android applications often rely on alarms to schedule back-
ground tasks. Since Android KitKat, applications can opt-in for de-
ferrable alarms, which allows the OS to perform alarm batching to re-
duce device awake time and increase the chances of network traffic being
generated simultaneously by different applications. This mechanism can
result in significant battery savings if appropriately adopted.

In this paper we perform a large scale study of the 22,695 most popular
free applications in the Google Play Market to quantify whether expec-
tations of more energy efficient background app execution are indeed
warranted. We identify a significant chasm between the way application
developers build their apps and Android’s attempt to address energy in-
efficiencies of background app execution. We find that close to half of
the applications using alarms do not benefit from alarm batching capa-
bilities. The reasons behind this is that (i) they tend to target Android
SDKs lagging behind by more than 18 months, and (ii) they tend to
feature third party libraries that are using non-deferrable alarms.

1 Introduction

Todays mobile devices support a diverse set of functionality, much of which is
not dependent on active user interaction. Many tasks are performed in the back-
ground, which has very clear impact on battery life and mobile data usage [4].
The impact is substantial enough that reducing and mitigating it has been the
focus of a significant amount of research and development.

A promising set of solutions aim to shape applications’ traffic [5,3,9,16,12,8],
but suffer from severe limitations. These techniques ignore application-protocol
interactions and lack integration with applications and OSes, often increasing
energy consumption due to retransmissions and/or signaling issues [17] in real-
world scenarios. Other works [4,17,14,15] highlight the need for better application
knowledge and/or integration with OS/platforms.

Alarms are Android’s integrated application execution scheduling mechanism
(used, e.g., for background network activity) and are a primary vehicle for exe-
cuting the traffic shaping techniques. Alarms are so critical to the functionality

of Android that they have been a hot topic at the last two Google 10 confer-
ences and a popular target for energy concerns®*. One way Android mitigates
Alarms’ negative impact is batching, which can reduce total device awake time
while increasing the chance that traffic from different applications can occur
simultaneously. As of KitKat, developers can opt-in to have their alarms be
deferrable which makes batching by the OS easier.

Unfortunately, the success of batching depends on the correct usage of alarm
APIs by applications: apps themselves determine the deferrability, trigger time,
and repetition interval of alarms. This leads to the situation Park et al. [13]
discovered in their study of 15 Android applications: alarms are often unneces-
sarily set as non-deferrable. However, it is totally unclear how widespread such
a practice is and thus its impact on the efficacy of alarm scheduling is unknown.

Since there is no indication that alarms will cease to be the preferred applica-
tion level scheduling mechanism within Android, future design and development
should be informed with an understanding of how developers use the current
alarm APIs. Thus, in this paper we perform a large-scale study of 22,695 real
applications from the Google Play Market (to the best of our knowledge, the
largest such study to date) in order to find evidence of alarm API adoption de-
lays and their impact on the performance of the Android OS; more specifically,
the effectiveness of alarm batching in Android. We investigate how many apps
use alarms, what type of alarms they use, differences in alarm usage by applica-
tion category, and whether alarms are being used by apps themselves or by 3rd
party libraries. We find that a shocking 46% of apps with alarms do not take
advantage of Android alarm scheduling capabilities due to either targeting old
SDK versions or their use of 3rd party libraries. We further discuss and analyze
the problems behind Android SDK adoption and propose possible directions for
improving alarm batching across applications.

2 Android Alarms

Alarms are the primary mechanism Android provides to allow applications to
schedule background activities. Alarms come in two flavors: 1) time critical
alarms, and 2) non-time critical. The first type is called an ezact alarm, and
the second is known as an inezact or deferrable alarm. The OS is expected
to execute exact alarms on schedule, but can delay the execution of deferrable
alarms. Deferrable alarms are particularly interesting due to the manner in which
Android can leverage them to improve power efficiency. For example, batching
alarms to multiplex network activity of multiple applications can reduce the
wake up frequency of the device’s radio.

Decisions related to what type of alarms to use are left to the application
developers since, in theory, only they have the insight necessary to assess the
impact a delayed alarm will have on their app. Unfortunately, developers will
often optimize for profit (e.g., ensuring fresh ads are retrieved/displayed as often

3G10’15, Doze - http://goo.gl/KEJURc
4GI0’14, Project Volta - https://goo.gl/acbnwF

Alarm API SDK < 19 SDK = 19 - 22 SDK = 23

set Exact Inexact Inexact
setRepeating Exact Inexact Inexact
setInexactRepeating Inexact Inexact Inexact
setExact NA Exact Exact
setWindow NA Inexact Inexact
setAndAllowWhileldle NA NA Inexact
setExactAndAllowWhileldle NA NA Exact

Table 1: Behavior of alarms based on the Target SDK level. We note that al-
though our dataset was collected before SDK 23 was available, the continuing
effort put into the alarm API highlights the critical nature of Android Alarms.

as possible) and usability rather than energy efficiency. A second wrinkle with
alarm types is that developers are free to define what Android SDK their app
targets. If the device the application is installed on has a different SDK than
the targeted one, a compatibility mode applies which in some cases can alter
the app’s behavior. This can have interesting consequences for alarms because
the default functionality for a given Alarm API call might differ between SDK
versions (see Table 1). E.g., if the targeted SDK version is less than 19, all API
calls but setInexactRepeating create exact alarms. For SDK 19+, a new call to
explicitly create exact alarms is introduced, and the behavior for the previously
existing calls is changed to create inexact alarms.

Therefore, applications with exact alarms are those which: 1) have target
SDK lower then 19 and use set or setRepeating calls or 2) use setExact.

Applications with inexact alarms are those which: 1) target > SDK 19 and
use set or setRepeating calls or 2) use setInexactRepeating or setWindow
calls. It is important to note, however, that despite being able to create inexact
alarms for SDK < 19, alarm batching across applications is only available for
devices with Android KitKat (SDK 19) or higher [1].

Alternatively, Android apps can also use a new alternative designed to facil-
itate correct implementation of alarms and to reduce alarm occurrences based
on app requirements: the JobInfo API. The JobInfo API provides new trigger-
ing conditions based on, for example, network (metered/unmetered) and device
state (e.g., idle/charging), backed by more sophisticated retry mechanisms to
avoid unnecessary execution, in turn allowing tuning apps with respect to bat-
tery consumption. The JobInfo APIs were introduced 6 months prior to our
experiments (SDK 21), however, none of the apps in our dataset made use of
them.

3 Results

3.1 Dataset

To understand the use of alarms in Android apps, we crawl Google Play and
download up to 564 of the most popular free apps for each Google Play category.

Removing duplicates we are left with 22,695 unique apps. Although studying
the most popular apps is clearly biased, it is justified for two reasons. First,
these apps are more likely to be optimized than the least popular apps due to
their associated revenues. Second, since these apps account for the majority of
downloads, they are more representative of what users actually have on their
mobile devices. This is evidenced by Viennot et al. [18] who found that the
top 1% of most downloaded apps account for over 81% of the total downloads in
November 30, 2013. To the best of our knowledge, our dataset (May 2015) should
account for around 1.5% of the total apps of the market in 2015 (AppBrain®
claims around 1.5 Million apps in the first quarter of 2015).

For each of the 22,695 apps, we extract their manifest; an XML file that con-
tains application meta-data, such as the application package name, components,
permissions, etc. Three of the properties listed in the manifest are the minimum,
maximum, and target SDK. The target SDK is the Android APT level (e.g., An-
droid 4.4 Kitkat has an API level of 19) that the application was developed for,
and, as discussed earlier, determines the types of alarms available to the devel-
oper. By default, apps that do not define a target SDK have their target default
to the minimum SDK.

3.2 Static Analysis

Since the focus of this study is understanding how alarms are being used by
apps, we perform static analysis on the apps we crawled. We first decompile
each of the apps, which provides us with assembly-like code (smali). We then
statically analyze the smali code to locate occurrences of Android Alarm API
calls. In our database, each occurrence of an alarm/jobinfo API call is regis-
tered along with the respective application, alarm API, smali file name, line and
annotations to the method where it occurs. Since some free apps are likely to
have ads [6], opposed to their paid version, we can analyze the API call location
and correlate it with the ad libraries (Section 3.5). Annotations are useful since
specific methods can use the TargetAPI annotation to denote that they want
to execute the method in compatibility mode. For apps, the meta-data (target
SDK, internet usage, category) is registered. In particular, we are interested in
correlating target Android SDKs with the the number of alarm API calls and
their usage within different apps and app categories.

3.3 Impact of Target SDK on Alarms

As mentioned previously, the target SDK of an application can significantly affect
the behavior of its alarms. As a first step towards understanding the impact
of the chosen target SDK, we plot the distribution of SDK targets from our
dataset in Fig. 1. It shows that despite the efforts of Google to promote the use
of their newer SDKs (e.g., Google IO conferences, extensive documentation and
application design guidelines), the majority of the popular apps target SDKs

http://www.appbrain.com/stats/number-of-android-apps

20 —

% Apps Targeting SDK

2R
o v o w
1 1 1 1

Target Android SDK (Date)

Fig. 1: Percentage of apps that define each Android SDK as the target SDK in
their manifests. NB: We were unable to extract the target SDK from 1.5% of
apps in our dataset.

Alarm Type SDK < 19 SDK >= 19
AlarmInexact 8.49% 52.91%
AlarmExact 44.05% 2.31%
Alarm 46.06% 53.49%
Table 2: Fraction of apps with exact and inexact alarms grouped by SDK version.
Dates represent the release dates of each Android SDK. Note that an application
can make use of both exact and inexact alarms.

that were released more than 18 months ago (up to and including SDK 19,
represent 71.6%). Close to half (48%) the apps target SDKs lagging behind by
more than 21 months.

From the perspective of alarms, we note that 47.23% of apps have a target
SDK lower than 19; i.e., they are still going to use the older alarm API behav-
ior with defaults oriented towards exact alarms. Out of the 22+K apps in our
dataset, 47.25% use alarms. Of the apps that use alarms, we see that 53.49% have
target SDK versions above 19, while 46.06% target older SDKs (Table 2). As
annotations can affect the targeted APIs on a per method basis, we confirmed
that only 2% of the apps with SDK < 19 had occurrences of the TargetAPI
annotation in methods containing alarm calls.

The major apparent difference between SDK < 19 apps and SDK > 19 apps
is the flip-flop in usage of exact and inexact alarms: only 2.31% of apps targeting
SDKs > 19 define exact alarms in contrast to the 44.05% of apps targeting <
19. We note that this change might not necessarily be the result of developers
being aware of the impact of exact alarms, but rather an end result of targeting
newer SDKs.

The reason behind Android being so conservative with maintaining the pre-
vious alarm behavior even in newer versions of Android is to avoid apps from
becoming unstable when updating. Since only 2.31% of the apps targeting SDKs
> 19 use the exact alarm APIT call, if we would consider the hypothesis that apps

Application SDK Downloads Version

es.lacaixa.mobile.android.newwapicon 17 1M-5M 2.0.17
com.cg.tennis 14 10M-50M 1.6.0
com.linkedin.android 15 10M-50M 3.4.8
com.rovio.angrybirds 18 100M-500M 5.0.2
com.cleanmaster.security 17 100M-500M 2.5.1
com.shazam.android 16 100M-500M 5.3.4
com.instagram.android 16 500M-1000M 6.20.2

Table 3: Example of popular and regularly updated apps with more than one
million downloads and with target SDK older than 19 months (as of May 2015).

with target SDK > 19 updated from an older SDK, it is probable that either
most apps did not have exact time constraints after all or that the ones that
do willingly avoided updating their SDKs. If the first is true, then Android is
being very conservative with their approach regarding alarms batching behav-
ior, which has a big impact on the power consumption of devices. Although we
did not study apps update rates, it would have been interesting to determine
if the second case holds by, for example, determining how many of these apps
were updated after the release of Android API level 19. Our intuition is that
even regularly updated apps often do not update their SDK. As an example, in
Table 3, we show a few well known apps which, by the time of our study, had
target SDKs lower than 19. Which means that these apps are unable to utilize
the new energy efficient alarm APIs provided by the latest Android SDKs.

Even if the device is supported and up-to-date, apps can target old versions of
the Android SDKs, which can have a negative impact on the overall performance
of the device. Our results clearly demonstrate that there is slow adoption of new
SDK versions by application developers. More importantly, we see that despite
the efforts to make Android more energy efficient with respect to alarm handling
(e.g., through JoblInfo and the introduction of inexact alarms), backwards com-
patibility (a necessary evil at this point due to fragmentation), lack of developer
awareness about new SDK benefits, and misuse of alarms by developers makes
it hard to succeed.

3.4 Type of Alarms depending on app category

Considering the conservative behavior of Android regarding non-deferrable alarms,
we now wonder which type of apps require exact alarms. To this end, we explore
how different categories (as retrieved from Google Play) of apps make use of
alarms (Figure 2).

Surprisingly, categories of apps such as widgets (80%), wallpapers (63%) and
personalization (60%) have a bigger fraction of apps with alarms than com-
munication (59%) and social categories (55%). While having more alarm def-
initions does not necessarily mean that there will be more alarm occurrences
during runtime, we found that, for example, there are 308 widget apps defining

WEATHER - 53.9 35 25 GAME_WORD - 39.6 19.6 25.4
TRAVEL_AND_LOCAL 43.9 19 28.1
TRANSPORTATION -] 33.7 11.9 25 GAME_TRIVIA - 37.7 198 228
TOOLS 45.2 17.5 315 GAME_STRATEGY -] 63.4 26.4 38.5
SPORTS 50 21.6 30.9
sociaL 4 55.1 17.8 a7 GAME_SPORTS - 535 22.9 32.6
SHOPPING 50.6 22.7 326 GAME_SIMULATION - 45.6 18.2 30.1
PRODUCTIVITY 54.3 27.1 34.2
PHOTOGRAPHY 45.6 14.4 33.6 GAME_ROLE_PLAYING — 64.7 318 35
PERSONALIZATION 60.3 30.4 33.7 GAME_RACING 48.8 20.3 30.2
NEWS_AND_MAGAZINES - 67.2 29.1 42.6
MUSIC_AND_AUDIO 38.9 14.7 30.7 GAME_PUZZLE 1 46.5 189 298
MEDICAL4 36.1 19.6 20 GAME_MUSIC - 327 15.6 17.3
MEDIA_AND_VIDEO 38.8 15.1 26.1
LIFESTYLE 53.9 227 36.1 GAME_FAMILY = 52.6 325 225
LIBRARIES_AND_DEMO - 17.6 9.9 7.9 GAME_EDUCATIONAL - 443 25.6 23
HEALTH_AND_FITNESS = 56.4 26.2 35.5
GAME o 48.4 235 28.1 GAME_CASUAL - 38.2 17.7 238
FINANCE 44.2 18 28.8 GAME_CASINO | 68.3 37.9 375
ENTERTAINMENT 46.8 21.7 31.9
EDUCATION 38.8 18.5 235 GAME_CARD 7 431 23 253
COMMUNICATION - 59.5 321 33 GAME_BOARD - 38 171 222
comcs 338 15.6 20.4 -
BUSINESS 405 17.9 271 GAME_ARCADE - 49.7 25.1 27
BOOKS_AND_REFERENCE | 35.4 191 191 GAME_ADVENTURE 48.6 23.7 26.9
APP_WIDGETS 80 30.3 63.7
APP_WALLPAPER - 62.9 245 45.1 GAME_ACTION - 59.9 247 412
T T T T T T
& &p@ \Q@g&“ & &@(0@“‘ \Q@;ﬁ
« & ¢ &
(a) All categories (b) Game apps

Fig. 2: Percentage of apps per category (avg. 523 apps) that have any kind of
alarms, have exact alarms and inexact alarms. Due to the high amount of Game
categories, a) groups this categories into GAME. Note that an application can
make use of both exact and inexact alarms.

repeating alarms (setRepeating and setInexactRepeating) (in Sec. 3.6 we
manually analyze some of these apps). Regarding time critical alarms, the five
application categories with most apps with exact alarms are respectively: casino
games (37.9%), weather (35%), family games (32.5%), communication (32.1%)
and role-playing games (31.8%). Finally, the average number of alarms defined
by apps per category is shown in Figure 3.

The widgets category not only has the largest number of apps with alarms
and one of the highest time critical alarms usage (30.3%), but also it also has the
highest average number of alarms (4.9) defined within an application. The an-
alyzed apps had up to 70 alarm definitions®, e.g., Whatsapp defines 28 alarms,
Instagram 11 and Facebook only 2. Again, we point that although Facebook

Scom.ecare.android.womenhe althdiary

Number of defined alarms

[AN
o o o
1 1 1

| e

| |

| e |

_—

_—

_—

1

-

-

-

[|

- .

[|

_—

| |

[ey

[|

1

[|

1

|

70, —
y -
[|
[—

Fig. 3: Average number of alarms per application for each Google Play category.
Error bars depict the maximum number of alarms for each category.

has only 2 alarm definitions, its alarms are actually very frequent during run-
time (Section 3.6).

3.5 The impact of 3rd party libraries

From our experience while studying apps, we have also seen that many apps
have a big proportion of 3rd-party content. For example, consider Skype, only
about 36.4% of its code is actually Skype-specific functionality, while 31.8%
accounts for 3rd-party SDKs (e.g., roboguice, jess, qik, android support) and
32.8% belongs to ads/analytics (e.g., flurry, Microsoft ads).

Hence one important aspect to check is whether defined alarms are native to
the application itself or if they originate from 3rd party libraries. We analyzed
the package names of the files where the alarms were detected and compared
them to 93 ads and analytics libraries available for Android, retrieved from a
public list provided by AppBrain’. The library package names and matches were
manually confirmed to eliminate false positives.

Figure 4 shows the number of apps where alarms defined by these ads/ana-
lytics libraries were found. Alarms of ads/analytics libraries found in less than 10
apps are omitted (e.g., cellfish, inmobi, mopub). Although our approach might
not cover all possible ads/analytics libraries, we were able to detect that 10.65%
of the unique apps (22.55% of apps with alarms) have alarms defined by third-
party ads/analytics, and around 10.42% of all alarm API calls found belong to
these libraries.

Finally, considering the number of alarms defined across all apps, we have
discovered that 31.5% of all alarms are repeating, while nearly 40.5% of alarms

Thttp://www.appbrain.com /stats/libraries/ad

1000

[%]
Q
Q
©
g
.9_100—
=
=}
kS
5 107
Qo
€
=1
z 4.
T T T T T | T T T T T T T T T
X & & & » P & P » \\\QJQ
¢ £ @ L@ & & P & & &
K & F & O
& L& ‘°¢0 <§"z> Q'é\é&@&@o o‘\ \’DQ ‘?é,\‘c’
<& & & & & & ¢ & S
S & R &’ & N @ &
4 ¥ & & N
5 e <

Ads/Analytics libraries that define alarms

Fig.4: Number of apps with alarms defined by third-party ads/analytic libraries.

are non-deferrable. Regarding 3rd-party ads and analytics libraries, their alarms
account for 10.4% of all alarm occurrences. From these occurrences, 72.6% of
them are repeating and 22.3% of them are non-deferrable. Even though we only
explored ads/analytics, given the large coverage of these 3rd-party libraries,
optimizing their resource consumption and having them use inexact alarms (e.g.,
using TargetAPI annotation) would certainly lead to appreciable gains in terms
of energy consumption.

3.6 Occurrence of alarms at execution time

To confirm the impact of alarms on Android KitKat (SDK 19), the first to
introduce batching by default, we perform two experiments. The experiments
use two different sets of 30 apps. The first set is the top 30 most popular free
apps of the Google Play market. The second set is the 30 apps with the largest
number of setRepeating alarm definitions that also target SDK lower than 19.
The latter was chosen since these alarms should be deferred if the target SDKs
were set to > 19 and notably includes apps with >1K to >500M downloads.
For each experiment we flash a new Android firmware (KitKat), install the
30 apps and create new accounts with no contacts/friends when needed (e.g.,
Gmail, Facebook, Twitter, etc.). All apps were started once to ensure Android
gives them permission to execute on reboot if required, and then the phone is
left on for around 30 minutes. We then reboot the phone, turn off its screen, and
let it run for around 3 hours. Finally, we gather the alarm and wakeup counts
as reported by Android Dumpsys (adb shell dumpsys alarm) for the installed
apps. Both experiments were repeated to confirm the patterns we observed.
There were a total of 261 alarms registered by the apps in our first experi-
ment. Only 53 (20%) caused the device to wakeup and we found no significant
correlation between the number of registered alarms and the number of alarms
that woke the device (r = 0.11, p = 0.55). That said, we were quite surprised
to find that the two Facebook apps (messenger and the regular app) were re-
sponsible for the majority of wakeups (15 per hour). Upon closer examination,

we determined that they were waking the phone to maintain a connection to a
message queue, even though the accounts used had literally zero social activity.
A total of 1,041 alarms were registered by apps in our second experiment. Of
these, 636 (61%) woke up the device and we found a strong and significant cor-
relation between the number of registered alarms and the number of alarms that
woke the device (r = 0.86, p < 0.01). The worst offending application was the
social network Spoora (10K-50K downloads) which registers only setRepeating
alarms and also has its SDK target set to 9. Spoora was responsible for 372 wake-
ups and is a clear example of the negative impact of careless alarm usage which
could be easily mitigated by simply targeting a newer SDK. Interestingly, this
type of scenario is not unique to less popular apps: Norton Security and Antivirus
(10M-50M downloads) has a target SDK of 17 and caused 141 wakeups.

From these two experiments we have clear evidence that poor alarm API
usage can cause substantial impact on the device, and it is not limited to small
time developers. In particular, our results highlight how even a simple misconfig-
uration (i.e., setting a target SDK too low) can have significant negative impacts
in execution behavior. In the future, we intend to run similar experiments on a
larger scale, taking direct battery measurements, manually modifying the target
SDK to quantify exactly how the impact on battery consumption changes be-
tween target SDKs, and more closely examining the relationship between alarm
type declaration and registration/wakeups.

4 Discussion and Conclusion

Research on energy efficiency in mobile devices tends to propose solutions fo-
cused on batching activity to amortize the cost of waking up the mobile device
and its radio. The efficiency of such solutions depends on the ability of the op-
erating system to schedule background activity at the most appropriate time.
In Android, alarms are a popular mechanism to schedule background activities.
To understand apps’ usage of alarms, we crawled the Google Play store and
downloaded over 22 thousand of the most popular apps.

We found that nearly 50% of apps define their alarms to be non-deferrable by
the operating system, thus hamstringing Android’s ability to optimize scheduling
at all. When examining the prevalence of alarms, we found that they existed
across all categories of apps with some having up to 70 alarms declared. For
apps with alarms, 22.5% have them defined by 3rd party ads/analytics libraries
they use, and these libraries account for at least 10.4% of all declared alarms.
We also showed the inefficiencies of alarms by manually analyzing 60 apps at
runtime, finding apps waking up the device an inordinate number of times.

While Android fragmentation has been studied in the past [7,10,11], it was
generally approached from the perspective of the wide distribution of Android
versions, heterogeneous hardware, and lack of updates. In this work we have
revealed another facet of this problem: even if the device is supported and up-
to-date, apps often target old versions of the Android SDKs, which can have a
negative impact on the overall performance of the device. Via static analysis, we
discovered that a substantial number of apps’ alarms are non-deferrable due to

targeting older versions of the Android SDK and that by simply changing the
target SDK to > 19 these apps would likely benefit from advanced OS alarm
scheduling mechanisms. Furthermore, while previous work [10] which studied a
much smaller set of 10 open-source apps found that 28% of method calls were
outdated with a median lag time of 16 months, we also show that in the case of
alarms, close to half the API calls are outdated by more than 18 months.

Ads and analytics are a particularly interesting subject of study since they
have been shown to have a big impact on energy consumption [6]. We found that
the majority of alarms related to ads and analytics are repeating, meaning that
they most likely result in background operations that might have no real end-
user benefit. This seems to be a problem that is core to Android in particular,
since iOS does not have a direct analogue to alarms and has an extremely limited
background execution environment [2]. Since from our experience a large pro-
portion of Android apps make use of third-party code, future large-scale studies
of energy consumption, optimization, and alarm usage should focus on common
third-party libraries.

When we examined alarm usage at runtime we discovered that the implica-
tions of the static analysis held true for the most part. The apps with the highest
number of defined alarms were in fact executing the alarms at an exceedingly
high rate. In one egregious case, a single application was responsible for 372
wakeups in a 3 hour period.

This work serves as an initial large-scale look into alarms and their impact.
Overall, our findings indicate that research on energy efficiency on mobile de-
vices needs to incorporate an understanding around the use of alarms. Deeper
examinations into the use and abuse of Android alarms should provide more
fruitful insight and solutions, leading to increased energy efficiency and device
performance.

References

1. Alarmmanager. http://goo.gl/ncrGaO

iOS Developer Library: Background execution. https://goo.gl/xZd16w

3. Athivarapu, P.K., Bhagwan, R., Guha, S., Navda, V., Ramjee, R., Arora, D., Pad-
manabhan, V.N., Varghese, G.: RadioJockey: mining program execution to opti-
mize cellular radio usage. In: Proceedings of the 18th annual international confer-
ence on Mobile computing and networking (2012)

4. Aucinas, A., Vallina-Rodriguez, N., Grunenberger, Y., Erramilli, V., Papagiannaki,
K., Crowcroft, J., Wetherall, D.: Staying online while mobile: the hidden costs. In:
Proceedings of the ninth ACM conference on Emerging networking experiments
and technologies (2013)

5. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consump-
tion in mobile phones: a measurement study and implications for network appli-
cations. In: Proceedings of the 9th ACM SIGCOMM conference on Internet mea-
surement conference (2009)

6. Gui, J., Mcilroy, S., Nagappan, M., Halfond, W.G.: Truth in advertising: The
hidden cost of mobile ads for software developers. In: Proceedings of the 37th
International Conference on Software Engineering (2015)

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

Han, D., Zhang, C., Fan, X., Hindle, A., Wong, K., Stroulia, E.: Understand-
ing Android Fragmentation with Topic Analysis of Vendor-Specific Bugs. In: 19th
Working Conference on Reverse Engineering (2012)

Higgins, B.D., Reda, A., Alperovich, T., Flinn, J., Giuli, T.J., Noble, B., Watson,
D.: Intentional networking: opportunistic exploitation of mobile network diversity.
In: Proceedings of the sixteenth annual international conference on Mobile com-
puting and networking (2010)

Liu, H., Zhang, Y., Zhou, Y.: TailTheft: leveraging the wasted time for saving en-
ergy in cellular communications. In: Proceedings of the sixth international work-
shop on MobiArch (2011)

McDonnell, T., Ray, B., Kim, M.: An Empirical Study of API Stability and Adop-
tion in the Android Ecosystem. In: Proceedings of the 2013 IEEE International
Conference on Software Maintenance (2013)

Mulliner, C., Oberheide, J., Robertson, W., Kirda, E.: PatchDroid: Scalable Third-
party Security Patches for Android Devices. In: Proceedings of the 29th Annual
Computer Security Applications Conference (2013)

Nguyen, N.T., Wang, Y., Liu, X., Zheng, R., Han, Z.: A Nonparametric Bayesian
Approach for Opportunistic Data Transfer in Cellular Networks. In: Wireless Al-
gorithms, Systems, and Applications (2012)

Park, S., Kim, D., Cha, H.: Reducing Energy Consumption of Alarm-induced
Wake-ups on Android Smartphones. In: Proceedings of the 16th International
Workshop on Mobile Computing Systems and Applications (2015)

Qian, F., Wang, Z., Gao, Y., Huang, J., Gerber, A., Mao, Z., Sen, S., Spatscheck,
O.: Periodic transfers in mobile applications: network-wide origin, impact, and
optimization. In: Proceedings of the 21st international conference on World Wide
Web (2012)

Shi, C., Joshi, K., Panta, R.K., Ammar, M.H., Zegura, E.W.: CoAST: collaborative
application-aware scheduling of last-mile cellular traffic. In: Proceedings of the
12th annual international conference on Mobile systems, applications, and services
(2014)

Vergara, E.J., Nadjm-Tehrani, S.: Energy-aware cross-layer burst buffering for
wireless communication. In: Proceedings of the 3rd International Conference on Fu-
ture Energy Systems: Where Energy, Computing and Communication Meet (2012)
Vergara, E.J., Sanjuan, J., Nadjm-Tehrani, S.: Kernel level energy-efficient 3g back-
ground traffic shaper for android smartphones. In: Proceedings of the 9th Interna-
tional Wireless Communications and Mobile Computing Conference (2013)
Viennot, N., Garcia, E., Nieh, J.: A Measurement Study of Google Play. In: The
2014 ACM international conference on Measurement and modeling of computer
systems (2014)

	An Empirical Study of Android Alarm Usage for Application Scheduling

